- Gerar link
- X
- Outros aplicativos
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
COM ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.
ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.
TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO E ESPECÍFICO NÍVEL DE ENERGIA.
SISTEMA MULTIDIMENSIONAL GRACELI
ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.
Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional].
Tunelamento quântico (ou efeito túnel) é um fenômeno da mecânica quântica no qual partículas podem transpor um estado de energia classicamente proibido. Isto é, uma partícula pode escapar de regiões cercadas por barreiras potenciais mesmo se sua energia cinética for menor que a energia potencial da barreira. Existem muitos exemplos e aplicações para os quais o tunelamento tem extrema importância, podendo ser observado no decaimento radioativo alfa, na fusão nuclear, na memória Flash, no diodo túnel e no microscópio de corrente de tunelamento (STM).[1]
Neste fenômeno consolidam-se conceitos imprescindíveis para a mecânica quântica como a natureza ondulatória da matéria, a função de onda associada a partículas, bem como o princípio da incerteza de Heisenberg.[2]
História
O tunelamento quântico foi desenvolvido a partir do estudo da radioatividade. Em meio ao crescente sucesso da mecânica quântica na terceira década do século 20, nada era mais impressionante do que o entendimento do Efeito Túnel - a penetração de ondas de matéria e a transmissão de partículas através de uma barreira potencial. Depois de algum tempo, o estudo mais aprofundado envolvendo tunelamento, supercondutores, semicondutores e a invenção do Microscópio de tunelamento, por exemplo, renderam à física 5 prêmios Nobel.[3]
Em 1927, Friedrich Hund foi o primeiro a tomar nota da existência do Efeito Túnel em seus trabalhos sobre o potencial de poço duplo.[3] George Gamow, em 1928, resolveu a teoria do decaimento alfa de um núcleo, via tunelamento com uma pequena ajuda matemática de Nikolai Kochin.[4]
Influenciado por Gamow, Max Born desenvolveu a teoria do Tunelamento , percebendo-a como uma consequência da mecânica quântica, aplicável não só à física nuclear, mas a uma série de outros sistemas diferentes. Os físicos Leo Esaki, Ivar Giaever e Brian Josephson descobriram, respectivamente, o tunelamento de elétrons em semicondutores, supercondutores e a supercorrente através de junções em supercondutores,o que lhes rendeu o Premio Nobel de Física no ano de 1973.[5]
Explicação do fenômeno
Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]
Considerando um elétron e a densidade de probabilidade da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]
O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.
,
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]
A massa de repouso do elétron (símbolo: me) é a massa de um elétron estacionário. É uma das constantes fundamentais da física e também é muito importante na química por causa de sua relação com a Constante de Avogadro. Tem um valor de cerca de 9.11×10−31 quilogramas ou cerca de 5.486×10−4 Unidade de massa atômica, equivalente para uma energia de cerca de 8.19×10−14 joules ou cerca de 0.511 megaeletrônomos.[1]
Terminologia
O termo "massa de repouso" + energia cinética vem da necessidade de levar em conta os efeitos da relatividade especial sobre a massa aparente (ou "observada") de um elétron. É impossível "pesar" um elétron estacionário, e assim todas as medidas práticas devem ser realizadas em elétrons em movimento. O mesmo acontece com qualquer outra partícula subatômica. Para partículas como fótons ou glúons, a situação é ainda mais problemática, uma vez que o próprio conceito de uma partícula sem massa estacionária ou "em repouso" carece de significado.
Determinação
A massa de repouso do elétron em quilogramas é calculada a partir da definição da Constante de Rydberg R∞:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
onde α é a constante de estrutura fina e h é a Constante de Planck.[1] A relativa incerteza, 5×10−8 no valor recomendado do CODATA 2006,[2] é devido inteiramente à incerteza no valor da constante de Planck.
A massa atômica relativa do elétron pode ser medido diretamente em um Penning trap. Também pode ser deduzido a partir dos espectros de átomos de hélio antiprotônico (átomos de hélio) onde um dos elétrons foi substituído por um antipróton ou por medidas do elétron fator-g nos íons hidrogenóides 12C5+ ou 16O7+. O valor recomendado de 2006 CODATA tem uma relativa incerteza de 4.2×10−10.[1]
A massa atômica relativa de elétrons é um parâmetro ajustado no conjunto CODATA de constantes físicas fundamentais, enquanto a massa de descanso de elétrons em quilogramas é calculada a partir dos valores da constante de Planck, a constante de estrutura fina e a constante de Rydberg.[1] A correlação entre os dois valores é insignificante (r = 0.0003).[2]
Relação com outras constantes físicas
Conforme mencionado acima, a massa de elétrons é usada para calcular a Constante de Avogadro NA:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Portanto, ele também está relacionado com a Constante de massa atômica mu:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Onde Mu é Constante de massa molar (definida em SI) e Ar(e) é uma quantidade diretamente medida, a massa relativa de elétrons]].
Note que mu é definida em termos de Ar(e), e não o contrário, e assim o nome "massa de elétrons em unidades de massa atômica" para "Ar(e) envolve uma definição circular (pelo menos em termos de medidas práticas).
A massa atômica relativa do elétron também entra no cálculo de todas as outras massas atômicas relativas. Por convenção, massas atômicas relativas são citadas para átomos neutros, mas as medidas reais são feitas em ions, quer num espectrômetro de massa ou um Penning trap. Portanto, a massa dos elétrons deve ser adicionada de volta aos valores medidos antes da tabulação.Deve ser feita uma correção para o equivalente em massa da energia de ligação Eb. Tomando o caso mais simples de ionização completa de todos os elétrons, para um nuclídeo X de número atômico Z,[1]
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Como as massas atômicas relativas são medidas como proporções de massas, as correções devem ser aplicadas a ambos os íons: felizmente, as incertezas nas correções são desprezíveis, como ilustrado abaixo para hidrogênio 1 e oxigênio 16.
1H | 16O | |
---|---|---|
massa atômica relativa do XZ+ ion | 1.007 276 466 77(10) | 15.990 528 174 45(18) |
massa atômica relativa do Z electrons | 0.000 548 579 909 43(23) | 0.004 388 639 2754(18) |
correção para a energia de ligação | −0.000 000 014 5985 | −0.000 002 194 1559 |
massa atómica relativa do átomo neutro | 1.007 825 032 07(10) | 15.994 914 619 57(18) |
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
O princípio pode ser demonstrado pela determinação da massa atômica relativa dos elétrons por Farnham et al. na Universidade de Washington (1995).[3] Envolve a medição das frequências da radiação ciclotrônica emitida por elétrons e por íons 12C6+ + em uma armadilha de Penning. A proporção das duas frequências é igual a seis vezes a razão inversa das massas das duas partículas (quanto mais pesada a partícula, menor a frequência da radiação do ciclotron, quanto maior a carga na partícula, maior a frequência):
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Como a massa atômica relativa de 12C6+ ions é muito próxima de 12, a relação de frequências pode ser usada para calcular uma primeira aproximação a Ar(e), 5.486 303 7178×10−4.Este valor aproximado é então usado para calcular uma primeira aproximação a "Ar(12C6+), sabendo que Eb(12C)/muc2 (a partir da soma das seis energias de ionização do carbono) é 1.105 8674×10−6: Ar(12C6+) ≈ 11.996 708 723 6367. Este valor é então usado para calcular uma nova aproximação para Ar(e), e o processo repetido até que os valores já não variam (dada a incerteza relativa da medida, 2.1×10−9): isso acontece no quarto ciclo de iterações para esses resultados, dando "Ar(e) = 5.485 799 111(12)×10−4 para esses dados.
Orbital atômico (português brasileiro) ou orbital atómica (português europeu) de um átomo é a denominação dos estados estacionários da função de onda de um elétron (funções próprias do hamiltoniano (H) na equação de Schrödinger , em que
é a função de onda).[1] Entretanto, os orbitais não representam a posição exata do elétron no espaço, que não pode ser determinada devido à sua natureza ondulatória; apenas delimitam uma região do espaço na qual a probabilidade de encontrar o elétron é mais alta.[2]
Números quânticos
- O valor do número quântico
(número quântico principal ou primário, que apresenta os valores
[também representado por
]) define o tamanho do orbital. Quanto maior o número, maior o volume do orbital. Também é o número quântico que tem a maior influência na energia do orbital.
- O valor do número quântico
(número quântico secundário ou azimutal, que apresenta os valores
) indica a forma do orbital e o seu momento angular. O momento angular é determinado pela equação:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
A notação científica (procedente da espectroscopia) é a seguinte:
, orbitais
, orbitais
, orbitais
, orbitais
Para os demais orbitais segue-se a ordem alfabética.
- O valor do
(número quântico terciário ou magnético, que pode assumir os valores
) define a orientação espacial do orbital diante de um campo magnético externo. Para a projeção do momento angular diante de um campo externo, verifica-se através da equação:
- O valor de
(número quântico magnético de spin ou spin) pode ser
. O valor de
que equivale a uma valor fixo
.
Pode-se decompor a função de onda empregando-se o sistema de coordenadas esféricas da seguinte forma:
Onde
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
representa a distância do elétron até o núcleo, e
a geometria do orbital.
Para a representação do orbital emprega-se a função quadrada,
, já que esta é proporcional à densidade de carga e, portanto, a densidade de probabilidade, isto é, o volume que encerra a maior parte da probabilidade de encontrar o elétron ou, se preferir, o volume ou a região do espaço na qual o elétron passa a maior parte do tempo.
A radioatividade (AO 1945: radioactividade) (também chamado de radiatividade (AO 1945: radiactividade)) é um fenômeno natural ou artificial, pelo qual algumas substâncias ou elementos químicos, chamados radioativos, são capazes de emitir radiações,[1] as quais têm a propriedade de impressionar placas fotográficas, ionizar gases, produzir fluorescência e atravessar corpos opacos à luz. As radiações emitidas pelas substâncias radioativas são principalmente partículas alfa, partículas beta e raios gama. A radioatividade é uma forma de energia nuclear, usada em medicina (radioterapia), e consiste no fato de alguns átomos como os do urânio, rádio e tório serem “instáveis”, perdendo constantemente partículas alfa, beta e gama (raios-X). O urânio, por exemplo, tem 92 prótons, porém através dos séculos vai perdendo-os na forma de radiações, até terminar em chumbo, com 82 prótons estáveis. Foi observada pela primeira vez pelo francês Henri Becquerel em 1896 enquanto trabalhava em materiais fosforescentes.[2]
A radioatividade pode ser:
- Radioatividade natural ou espontânea: É a que se manifesta nos elementos radioativos e nos isótopos que se encontram na natureza e poluem o meio ambiente.
- Radioatividade artificial ou induzida: É aquela que é provocada por transformações nucleares artificiais.
Visão geral
O fenômeno da desintegração espontânea do núcleo de um átomo com a emissão de algumas radiações é chamado de radioatividade. A radioatividade transforma núcleos instáveis fazendo surgir as radiações α, β e γ.
A lei fundamental do decaimento radioativo afirma que a taxa de decaimento é proporcional ao número de núcleos que ainda não decaíram:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Esta é a equação da lei básica para a radioatividade.
A medida da intensidade da radioatividade é feita em duas unidades que são:
- Curie: Definido como a quantidade de material radioativo que
dá desintegrações por segundo.
- Rutherford (Rd): é definido como a quantidade de substância radioativa que dá
desintegrações por segundo.
Na natureza existem elementos radioativos que exibem transformação sucessiva, isto é, um elemento decai em substância radioativa que também é radioativa. Na transformação radioativa sucessiva, se o número de nuclídeos qualquer membro da cadeia é constante e não muda com o tempo, é chamado em equilíbrio radioativo.[3] A condição de equilíbrio é portanto:
ou
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
//////////////////////////////////////////////////// núcleo-filha (do Inglês daughter) e núcleo-neta (do Inglês granddaughter) respectivamente.
O estudo da radioatividade e radioisótopos tem várias aplicações na ciência e tecnologia. Algumas delas são:
1. Determinação da idade de materiais antigos com auxílio de elementos radioativos.
2. Análises para obtenção de vestígios de elementos.
3. Aplicações médicas como diagnóstico e tratamento.
Radioatividade artificial
Produz-se a radioatividade induzida quando se bombardeiam certos núcleos com partículas apropriadas. Se a energia destas partículas tem um valor adequado, elas penetram no núcleo bombardeado formando um novo núcleo que, no caso de ser instável, se desintegra posteriormente. Foi realizada pela primeira vez pelo físico neozelandês Ernest Rutherford, ao bombardear átomos de nitrogênio, com partículas alfas, obtendo oxigênio. Sendo estudada pelo casal “Joliot-Curie” (Frédéric Joliot e Irène Joliot-Curie), bombardeando núcleos de boro e alumínio com partículas alfa, eles observaram que as substâncias bombardeadas emitiam radiações após retirar o corpo radioativo emissor das partículas alfa. O estudo da radioatividade permitiu um maior conhecimento da estrutura dos núcleos atômicos e das partículas subatômicas. Abriu-se a possibilidade da transmutação dos elementos, ou seja, a transformação de elementos em elementos diferentes. Inclusive o sonho dos alquimistas de transformar outros elementos em ouro se tornou realidade, mesmo que o processo economicamente não seja rentável.[4]
Em 1896, Henri Becquerel (1852-1908) estudava, na École Polytechnique, a possibilidade de que o sol poderia provocar a emissão de raios X pelos cristais. O método por ele utilizado era de que o colocava-se cristais perto de placas fotográficas envoltas em um papel escuro, tendo uma tela composta de fios de cobre entre os dois.[5]
Os raios de sol causando a emissão dos raios X nos cristais , os mesmos deveriam penetrar no papel escuro, mas não penetrando nos fios de cobre da tela e assim o cientista poderia ver a fotografia da tela na placa. Em seguida Becquerel colocou a tela em uma gaveta e deixou o cristal sem nenhuma proteção sobre uma mesa. Retornou , dias depois, e viu que nela havia uma impressão da tela de cobre. Sua conclusão foi a de que a radiação emitida pelo cristal (no caso de urânio) não havia sido provocada pelo Sol , e sim por alguma propriedade do mesmo cristal. Mais tarde Becquerel repetiu a experiência colocando o cristal e a placa fotográfica dentro de uma caixa blindada e obteve o mesmo resultado.
Em 1898, Marie (1867-1934) e Pierre Curie (1859-1906) descobriram elementos que produzem os raios catódicos, por exemplo, o rádio. Observando que a radiação deste elemento era maior que a do urânio. Logo a seguir batizou este fenômeno de radioatividade.
Logo após, Ernest Rutherford achou dois tipos de raios, os quais ele batizou de alfa e beta. O raio beta tendo uma característica de alto poder de penetração e o raio alfa, ao contrário, pequeno poder de penetração. Os raios beta são elétrons e os raios alfa são núcleos de hélio. Logo em seguida descobriu-se que os raios beta, ao serem defletidos em campos elétricos, mostravam ter carga negativa e tinham uma velocidade muito maior do que a dos raios catódicos - os raios beta são elétrons que vêm de dentro do núcleo e com muito mais energia. Rutherford, por outro lado, mostrou que a relação carga-massa do raio alfa era parecida com a do hidrogênio e que sua carga era duas vezes maior do que a do hidrogênio. Descobriu, portanto, o primeiro núcleo mais pesado que o hidrogênio - o hélio.[5]
Quantização da radioatividade
O decaimento radioativo é um processo que envolve conceitos de probabilidade. Partículas dentro de um átomo têm certas probabilidades de decair por unidade de tempo de uma maneira espontânea. A probabilidade de decaimento é independente da vida previa da partícula. Por exemplo se N(t) é considerado o número de partículas como função do tempo, então, temos a taxa de decaimento sendo proporcional a N.[5]
Formulando matematicamente temos:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
A constante de proporcionalidade tem dimensão inversamente proporcional ao tempo.
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
onde é o número inicial de partículas. O número de partículas de um dado elemento decai exponencialmente numa taxa diretamente proporcional ao elemento. Define-se a vida média de um elemento como
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Tendo um exemplo de muitas partículas, 1/e delas (cerca de 37,8%) não decairão após um tempo . Na Física Nuclear trabalha-se com o conceito de vida média, que é o tempo depois do qual a amostra se reduziu à metade.[5]
Relacionando essas duas quantidades ,assim temos:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Tipos de decaimento
Quanto aos tipos de radiação, descobriu-se que um campo elétrico ou magnético podia separar as emissões em três tipos de raios. Por falta de melhores termos, os raios foram designados alfabeticamente como alfa, beta e gama, o que se mantém até hoje. Enquanto que o decaimento alfa foi apenas observado nos elementos mais pesados (número atómico 52, telúrio, e maiores), os outros dois tipos de decaimento foram observados em todos os elementos.[6]
Ao analisar-se a natureza dos produtos do decaimento, tornou-se óbvio a partir da direção das forças eletromagnéticas produzidas sobre as radiações pelos campos magnético e elétrico externos, que os raios alfa tinham carga positiva, os raios beta carga negativa, e que os raios gama eram neutros. A partir da magnitude de defleção, era claro que as partículas alfa eram muito mais maciças do que as partículas beta. Fazer passar partículas alfa através de uma janela de vidro muito fina e encerrá-las numa lâmpada de néon permitiu aos investigadores estudarem o espectro de emissão do gás resultante, e finalmente demonstrarem que as partículas alfa são núcleos de hélio. Outras experiências mostraram a semelhança entre a radiação beta clássica e os raios catódicos: são ambos fluxos de eletrões. De igual modo, descobriu-se que a radiação gama e os raios-X são formas semelhantes de radiação eletromagnética de alta-energia.[6]
Embora os decaimentos alfa, beta e gama sejam os mais comuns, outros tipos seriam descobertos. Pouco depois da descoberta do positrão em produtos de raios cósmicos, percebeu-se que o mesmo processo que opera no decaimento beta clássico pode também produzir positrões (emissão positrónica). Num processo análogo, descobriu-se que ao invés de emitirem positrões e neutrinos, alguns nuclídeos ricos em protões capturavam os seus próprios eletrões atómicos (captura eletrónica), e emitem apenas um neutrino (e geralmente também um raio gama). Cada um destes tipos de decaimento envolve a captura ou emissão de eletrões ou positrões nucleares, e leva o núcleo a aproximar-se da razão entre neutrões e protões que tem a menor energia para um dado número total de nucleões (neutrões mais protões).[6]
Pouco tempo após a descoberta do neutrão em 1932, Enrico Fermi descobriu que certas reações de decaimento raras produziam neutrões como partícula de decaimento (emissão de neutrões). A emissão protónica isolada acabaria por ser observada em alguns elementos. Foi também descoberto que alguns elementos mais pesados podem sofrer fissão espontânea resultando em produtos de composição variável. Num fenómeno chamado decaimento aglomerado, observou-se que eram emitidas ocasionalmente pelos átomos combinações específicas de neutrões e protões (núcleos atómicos), que não as partículas alfa.
Foram descobertos outros tipos de decaimento radioativo que emitiam partículas já conhecidas, mas por meio de mecanismos diferentes. Um exemplo é a conversão interna, a qual resulta na emissão eletrónica e por vezes emissão de fotões de alta-energia, embora não envolva nem decaimento beta nem decaimento gama. Este tipo de decaimento (como o decaimento gama de transição isomérica) não transmuta um elemento em outro.[6]
São conhecidos eventos raros que envolvem a combinação de dois eventos de decaimento beta com ocorrência simultânea. É admissível qualquer processo de decaimento que não viole as leis de conservação da energia ou do momento (e talvez outras leis de conservação) , embora nem todos tenham sido detectados.
Leis da radioatividade
- 1ª Lei- quando um átomo emite uma partícula alfa, seu número atômico diminui de duas unidades e sua massa atômica de quatro unidades.[7]
- 2ª Lei- quando um átomo emite uma partícula beta, seu número atômico aumenta de uma unidade.[7]
As radiações gama não alteram o número atômico nem o número de massa do átomo. Quando um átomo emite uma partícula radioativa dizemos que ele sofreu uma desintegração.
1ª Lei
1ª Lei da Radioatividade ou 1ª Lei de Soddy ( 1ª lei da radiatividade natural ) - Quando um radioisótopo emite uma partícula alfa (α) originará um novo elemento que apresenta redução de duas unidades em seu número atômico ( prótons) e redução de 4 unidades em seu número de massa (A – 4).
Por exemplo, o plutônio apresenta número de massa igual a 242 e número atômico de 94, ao emitir uma partícula alfa (α), será transmutado a urânio com número de massa igual a 238 e número atômico, 92.[8]
2ª Lei
2ª Lei da Radioatividade ou 2ª Lei de Soddy ( ainda conhecida por Lei de Fajans e Russel ) - Quando um radioisótopo emite uma partícula beta (β) o seu número atômico aumenta em uma unidade e o seu número de massa praticamente não sofre alteração.[9]
A desintegração de um nêutron no núcleo de um radioisótopo instável gera: um próton, uma partícula beta (β), um antineutrino, radiação gama. Por isso, o número atômico aumenta em uma unidade, já que nesse núcleo houve a formação de um novo próton.
Por exemplo, o tório apresenta massa atômica igual a 234 e número atômico, 90; ao emitir uma partícula beta (β), será transmutado a protactínio, que apresenta massa atômica igual a 234 e número atômico, 91.
Leis de Soddy e Fajans
As leis da desintegração radioativa, descritas por Soddy e Fajans, são:[10]
- Quando um átomo radioativo emite uma partícula alfa, o número de massa do átomo resultante diminui em 4 unidades e o número atômico em 2 unidades.
- Quando o átomo radioactivo emite uma partícula beta, o número de massa do átomo resultante não varia e o seu número atômico aumenta em 1 unidade.
- Quando um núcleo "excitado" emite uma radiação gama não ocorre variação no seu número de massa e número atômico, porém ocorre uma perda de uma quantidade de energia "hν".
Desse modo, a emissão de partículas alfa e beta pelos átomos instáveis muda seu número atómico, transformando-os em outros elementos. O processo de desintegração nuclear só termina com a formação de átomos estáveis. O urânio-238, por exemplo, vai sofrendo decaimento até formar o elemento chumbo-206.
Decaimento radioativo como um processo estatístico
A lei de decaimento radioativo, foi deduzida a partir da suposição que decaimento radioativo num intervalo de tempo dado .[11]
A ideia é que todos os núcleos dum dado elemento químico são indistinguíveis. O melhor que se pode fazer é determinar o número médio de núcleos sofrendo decaimento no intervalo de tempo a partir de até
.
Assim, o que nós temos é um processo estatístico, isto é, o decaimento dum dado núcleo é um evento aleatório possuindo uma certa probabilidade de ocorrência.
A probabilidade de decaimento por unidade de tempo por núcleo pode ser deduzida como se segue. Se nós temos N núcleos originais e o número que sofre decaimento no intervalo de tempo é
, então o decrescimento relativo,
no número de núcleos por unidade de tempo, isto é, a quantidade
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
dá a probabilidade de decaimento por unidade de tempo por núcleo.
Esta definição concorda com o significado da constante de decaimento, .
Por definição, a constante de decaimento é a probabilidade de decaimento por unidade de tempo por unidade de núcleo.
Determinação de idade a partir da radioatividade
Em outras palavras, radioatividade disponibiliza uma espécie de escala de tempo. De acordo com a lei de radioatividade: o intervalo de tempo entre os instantes em que o número de núcleos radioativos é
e
é:O decrescimento no número de núcleos radioativos de acordo com a lei de decaimento radioativo, pode ser usada como um meio para medir o tempo que passou desde que uma amostra contendo, inicialmente
átomos radioativos e o instante quando o seu número é
.
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Como regra, N representa o número de núcleos não transformados no tempo presente, de modo que a equação acima dá a idade da amostra contendo os núcleos radioativos.
Nos estudos geológicos, uma escala de tempo radioativa diferente é necessária para cada aplicação. Ao determinar a idade das rochas, por exemplo, alguém deverá usar uma escala de tempo radioativa suficientemente lenta, isto é, decaimentos radioativos com meia vida da mesma ordem de grandeza que as épocas geológicas que ronda para centenas de milhões ou mesmo milhões de milhões de anos. Esta condição é satisfeita pela meia vida de e
.
O urânio que ocorre naturalmente (que existe na natureza) é na verdade uma mistura de ambos. As suas meias-vidas são 4500 milhões e 900 milhões de anos, respectivamente.
No presente, o urânio quimicamente puro e ocorrendo naturalmente, contém
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
sendo o último o produto de decaimento radioativo de . Dado que o seu conteúdo é muito pequeno, o urânio 234 pode ser ignorado.
Cada um dos isótopos e
é pai da sua própria série radioativa, ambas as quais terminam em isótopos de chumbo. Assim, núcleos de chumbo são os produtos finais do decaimento radioativo de núcleos de urânio.
Usando a razão entre urânio natural e o chumbo obtido deste, é possível determinar o intervalo de tempo durante o qual esta quantidade de chumbo se acumulou.
Na arqueologia, radioatividade é usada para determinar a idade de objetos encontrados nas escavações. Em tais aplicações, a escala de tempo de urânio não é apropriada por pelo menos duas razões:
Por uma coisa, artefatos nunca contiveram urânio. Por outra, o relógio de escala de tempo de urânio é muito lenta para a história humana onde o tempo é muitas vezes medido em séculos ou milénios. Em outras palavras, para determinar a idade de objetos arqueológicos precisa-se de escala de tempo radioativo com a meia vida de alguns séculos ou milénios. A natureza disponibilizou tal escala de tempo.
As partículas que constituem os chamados raios cósmicos primários são extremamente energéticas e, colidindo com os núcleos de elementos que formam a atmosfera da Terra, quebra-os em fragmentos. Estes fragmentos, são altamente energéticos também, e formam os chamados raios cósmicos secundários. A interação dos raios cósmicos com os núcleos do nitrogénio atmosférico transforma-os em núcleos de carbono com número de massa 14, em vez de 12, como acontece com o carbono ordinário. tem meia vida de cerca de 5570 anos o qual serve muito bem para arqueologistas. Além disso, porque a intensidade dos raios cósmicos primários permanece praticamente constante, existe um fornecimento invariável de carbono radioativo na atmosfera. O carbono radioativo produz dióxido de carbono radioativo através das plantas e cadeia alimentar, encontra o seu caminho nos animais e torna-se parte dos seus órgãos e tecidos.
Numa planta viva ou animal, a percentagem do conteúdo de carbono radioativo em comparação com o carbono ordinário não muda com o tempo, porque quaisquer perdas tornam-se boas pela alimentação. Se, contudo, a planta ou animal morre, a alimentação não pode mais substituir a perda do carbono radioativo. Assim, pode-se determinar o tempo passando desde a morte do organismo ou a idade do artifício feito de material orgânico.
Usando um contador de partículas electrizadas, foi descoberto que o carbono 14 sofre decaimento através da emissão de partículas beta que um grama de carbono radioativo contém na celulose duma árvore viva ou recentemente cortada, a atividade de um isótopo radioativo é 17,5 partículas por minuto. Isto é, a atividade de um isótopo radioativo é 17,5 decaimentos por minuto.
Convertendo, = 5570 anos em minutos, encontramos o número de núcleos de
que tem este valor de atividade:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL
Assim, um grama de carbono na celulose duma árvore viva ou recentemente cortada contém 75 000 milhões núcleos de carbono radioativo. Este número diminui progressivamente porque não é mais substituído (e isto acontece quando a árvore é cortada), o número original decresce com o tempo. Isto é, a atividade do carbono radioativo restante irá decrescer progressivamente. Se nós compararmos a sua atividade presente à atividade que estava presente quando a madeira foi cortada, podemos determinar o intervalo de tempo entre estes dois instantes.
Quando esta técnica é aplicada em artefatos de madeira muitas vezes encontrados nas escavações arqueológicas, na verdade determina-se o tempo no qual a árvore foi cortada. Isto dá a idade do artefacto feito a partir da madeira dessa árvore.
O efeito Hall quântico, também chamado de efeito Hall quântico inteiro, é uma versão do efeito Hall em mecânica quântica, observado em sistemas bidimensionais de elétrons[nota 1] [1][2] submetidos a baixas temperaturas e fortes campos magnéticos, em que a condutividade Hall sofre certas transições quânticas para assumir valores quantizados:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Nessa expressão é o canal,
é a tensão de Hall,
é a carga do elétron e
é a constante de Planck.[3]
- Gerar link
- X
- Outros aplicativos
Comentários
Postar um comentário